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The Schur-decomposition for three-dimensional matrix equations is developed and used to
directly solve the radiative discrete ordinates equations which are discretized by Cheby-
shev collocation spectral method. Three methods, say, the spectral methods based on 2D
and 3D matrix equation solvers individually, and the standard discrete ordinates method,
are presented. The numerical results show the good accuracy of spectral method based on
direct solvers. The CPU time cost comparisons against the resolutions between these three
methods are made using MATLAB and FORTRAN 95 computer languages separately. The
results show that the CPU time cost of Chebyshev collocation spectral method with 3D
Schur-decomposition solver is the least, and almost only one thirtieth to one fiftieth CPU
time is needed when using the spectral method with 3D Schur-decomposition solver com-
pared with the standard discrete ordinates method.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The robust and efficient solving of the matrix equation
AX þ XB ¼ C ð1Þ
plays a very important role in the numerical computation of many fields such as control theory [1], stability of linear system
[2], computational fluid dynamics (CFD) [3–6], etc. Eq. (1) is so called Sylvester equation. The matrices A, B and C in Eq. (1) are
all real, and A 2 Rm�m;B 2 Rn�n;C 2 Rm�n. It is well know that Eq. (1) has a unique solution if and only if the eigenvalues
e1; e2; . . . ; em of A and q1;q2; . . . ;qn of B satisfy ei þ qj – 0 ði ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;nÞ. According to the eigenvalue prop-
erties of matrices A and B, different algorithms were proposed for Eq. (1). For example, the matrix-diagonalization procedure
[3–7] is direct and very efficient when the eigenvalues of A and B are real. However, when the eigenvalues of A and B are
complex, the Schur-decomposition (Hesenberg–Schur or Schur-reduction are called also) [1,8] is also direct and very effi-
cient, and further is used to avoid complex number computations. Another direct way for Eq. (1) is the tensor product meth-
od [9] in which the huge memory is needed special when large grid number is used. Some efficient iterative methods [2,10]
for Eq. (1) under some special conditions are available. Unfortunately, the iterative methods are less and less employed in
favor of the direct ones.

In general, the eigenvalue properties of coefficient matrices A and B in Eq. (1) are determined by numerical methods and
physical problems. For example, when the Chebyshev collocation spectral method is adopted for steady-state advection-dif-
. All rights reserved.
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fusion equation in fluid dynamics, the resultant algebraic system from the discretization of governing equation always has
complex eigenvalues [11]. Under these kinds of situations, the Schur-decomposition should be the best choice for solving.
While in numerical simulation of incompressible viscous flow, the Poisson equations appear after divergence free of
Navier–Stokes equations, and the algebraic system from Chebyshev collocation spectral approximation has real eigenvalues.
This time the matrix-diagonalization procedure is usually the most adapted [7].

In the area of thermal radiation, the three-dimensional radiative transfer equation (RTE), which takes the radiative inten-
sity as unknown variable, is an advection-type partial differential equation (PDE), and only the first derivatives are included
[12]. After discretization of RTE using Chebyshev collocation spectral method in space, the resultant algebraic system is a set
of 3D matrix equations, and the eigenvalues of the coefficient matrices are complex. To the best knowledge of authors, there
is not Schur-decompostion method for 3D matrix equations in references up to now.

In the reminder of this paper, the physical problem and its governing equation together with boundary condition will be
presented in Section 2, the Chebyshev collocation spectral method is adopted to solve this problem numerically, and the
resultant 3D matrix equations are formulated. The detailed Shur-decomposition method to solve the 3D matrix equations
are described in Section 3. The results to show the superiorities of Schur-decomposition for 3D matrix equations and discus-
sions are illustrated in Section 4. Finally, Section 5 gives the conclusions.
2. Physical problem and the Chebyshev matrix equations for discrete ordinates RTEs

2.1. Physical problem

Due to the high accuracy (exponential convergence or spectral accuracy) of spectral methods [13,14], the Chebyshev
collocation spectral method was employed to solve thermal radiation by Li and co-authors [15–19]. As an extension of
our recent works [15–19], the Chebyshev collocation spectral method is adopted to solve the radiative heat transfer in a
3D box-shaped furnace with absorbing-emitting media [20]. There exist steep temperature gradients in the axial direction
of the furnace. The temperature profiles can be calculated according to the detailed description in Ref. [20]. First, the angular
dependence of the problem is discretized by discrete ordinates method (DOM) [21–24]. The discrete ordinates representa-
tion of RTE in rectangular system for absorbing-emitting gray medium is
Table 1
Dimens

Dim

Opti
Wall

Gas

Posit
Slop
lm @Im

@x
þ gm @Im

@y
þ nm @Im

@z
þ KaIm ¼ KaIb ð2Þ
where Imðm ¼ 1;2; . . . ;MÞ is the total radiation intensity at position (x, y, z) and in the direction m, whose direction cosine is
ðlm;gm; nmÞ; Ka is the absorption coefficient of the medium; and Ib is the total blackbody radiation intensity at the temper-
ature of the medium. Eq. (2) and represents M uncoupled partial differential equations for the M intensities,
Imðm ¼ 1;2; . . . ;MÞ.

In our first step to develop the Chebyshev collocation spectral method for this problem, we focus on the direct solver for
Eq. (2) and just consider the situation of black boundary. Assuming all the boundaries are black, then the boundary condition
for Eq. (2) is
Ibw ¼ rT4
w=p ð3Þ
where Ibw is the blackbody radiation intensity at the temperature of the surface, Tw;r is the Stefan–Boltzmann constant. The
detail boundary conditions together with length scale and optical thickness are dimensionlessly listed in Table 1.

2.2. Chebyshev matrix equations for discrete ordinates RTEs

In order to clearly understand, the following definitions are given.
ionless data for three-dimensional rectangular furnace fed to computer codes.

ensions of the furnace eLx ¼ 1; eLy ¼ 1; eLz ¼ 6
cal thickness s0 ¼ 1=6
blackbody intensities ðeIbwÞside ¼ 0:0020

ðeIbwÞburner ¼ 0:0574

ðeIbwÞend ¼ 0:0167
temperature eT i ¼ 0:1775eT e ¼ 0:6222eT max ¼ 1
ion of the peak Z0max ¼ 0:8

e of gas temperature distribution at furnace exit de ¼ �0:22
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Definition 1. If A is a m� n 2D matrix, X is a n� p� q 3D matrix, we use the symbol ‘‘�ð1Þ” to denote the computation
Y ¼ A�ð1ÞX when it satisfy yi;j;k ¼
Xn

t¼1

ai;txt;j;k; ð1 6 i 6 m; 1 6 j 6 p; 1 6 k 6 qÞ:
Definition 2. If B is a p�m 2D matrix, X is a n� p� q 3D matrix, we use the symbol ‘‘�ð2Þ” to denote the computation
Y ¼ X�ð2ÞB when it satisfy yi;j;k ¼
Xp

t¼1

xi;t;kbt;j; ð1 6 i 6 n; 1 6 j 6 m; 1 6 k 6 qÞ:
Definition 3. If C is a q�m 2D matrix, X is a n� p� q 3D matrix, we use the symbol ‘‘�ð3Þ” to denote the computation
Y ¼ X�ð3ÞC when it satisfy yi;j;k ¼
Xq

t¼1

xi;j;tct;k; ð1 6 i 6 n; 1 6 j 6 p; 1 6 k 6 mÞ:
Now the space dependence of the problem is expressed by Chebyshev polynomial and discretized by spectral collocation
method similar as in [15–19].

First, the mapping of arbitrary domain fX : ðx; y; zÞ 2 ½X1;X2� � ½Y1;Y2� � ½Z1; Z2�g to standard computational cube domain
fD : ða; b; cÞ 2 ½�1;1� � ½�1;1� � ½�1;1�g is needed to fit the requirement of Chebyshev polynomial
a ¼ 2x�ðX2þX1Þ
ðX2�X1Þ

; x ¼ aðX2�X1ÞþðX2þX1Þ
2

b ¼ 2y�ðY2þY1Þ
ðY2�Y1Þ

; y ¼ bðY2�Y1ÞþðY2þY1Þ
2

c ¼ 2z�ðZ2þZ1Þ
ðZ2�Z1Þ

; z ¼ cðZ2�Z1ÞþðZ2þZ1Þ
2

8>>><>>>: ð4Þ
After mapping, Eq. (2) becomes
lm 2
X2 � X1

� �
@Im

@a
þ gm 2

Y2 � Y1

� �
@Im

@b
þ nm 2

Z2 � Z1

� �
@Im

@c
þ KaIm ¼ KaIb ð5Þ
The Gauss–Lobatto collocation points [11,13,14] are used for spatial discretization for all three coordinates
ai ¼ � cos pi
Nx
; i ¼ 0;1; . . . ;Nx

bj ¼ � cos pj
Ny
; j ¼ 0;1; . . . ;Ny

ck ¼ � cos pk
Nz
; k ¼ 0;1; . . . ;Nz

8>><>>: ð6Þ
where Nx;Ny;Nz are the resolutions (number of grid points) in three coordinates, respectively.
The Chebyshev approximation of radiative intensity reads
Im
Nx ;Ny ;Nz

ða;b; cÞ ¼
XNz

k¼0

XNy

j¼0

XNx

i¼0

bIm
i;j;kTiðaÞTjðbÞTkðcÞ ð7Þ
where the TiðaÞ; TjðbÞ; TkðcÞ are the first kind Chebyshev polynomials, and the coefficients bIm
i;j;kði ¼ 0;1; . . . ;Nx; j ¼

0;1; . . . ;Ny; k ¼ 0;1; . . . ;NzÞ are determined by requiring Im
Nx ;Ny ;Nz

ða; b; cÞ to coincide with Imða; b; cÞ at the collocation points
ðai; bj; ckÞ, i ¼ 0;1; . . . ;Nx; j ¼ 0;1; . . . ;Ny; k ¼ 0;1; . . . ;Nz. The detail process and formulations can be found in our former
work [17]. Especially the transformation of derivative operator to square matrix, like @=@a) Da, is given in Ref. [17]. Though
they were presented for one-dimensional problem, they can be extended for present three-dimensional system straight for-
ward. The derivative operators in Eq. (5) are finally substituted by the discretized derivative matrices. Then the discretized
form of Eq. (5) reads
X

l

Ai;lI
m
l;j;k þ

X
l

Bj;lI
m
i;l;k þ

X
l

Ck;lI
m
i;j;l þ KaIm

i;j;l ¼ Fi;j;k ð8Þ
where A, B, and C are square matrices associated with differential operators in each of three dimensions, for example

A ¼ lm 2
X2�X1

� �
Da; Im is the 3D solution matrix but in m direction; and F is the known right hand side term, further

Fi;j;k ¼ KaðIbÞi;j;k ¼ KarT4
i;j;k=p. Please note that, Eq. (8) is a separable matrix equation, and the constant coefficient Ka can

be incorporated into A, or B or C. Thus Eq. (8) can be rewritten as the following form
A�ð1ÞI
m þ Im

�ð2ÞBþ Im
�ð3ÞC ¼ F ð9Þ
In above equations, the matrix B is a transpose of gm 2
Y2�Y1

� �
Db.

It should be noted that, the square matrix Da, which involves the first derivative respect to a, is the function of grid points
aiði ¼ 0;1; . . . ;NxÞ alone, and it is only needed to be computed once for all in the preparing computation. For the mth direc-
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tion, the lm is constant, and the factor 2=ðX2 � X1Þ is fixed, thus the matrix A is only needed to be computed once for all.
Similarly, matrices B, C, and F are needed to be computed once for all in the preparing computation before the solving of
matrix Eq. (9).

2.3. Boundary conditions

The matrix Eq. (9) has to be solved with appropriate boundary conditions. Unlike in CFD, the boundary conditions import
is something cumbersome but not difficulty due to the direction characteristic of radiation. All boundary conditions in pres-
ent work belong to Dirichlet type.

Let we go back to Eq. (8) with the coefficient Ka being incorporated into A, and assume the direction cosines ðlm;gm; nmÞ of
mth direction all have positive values. After the boundary conditions import, Eq. (8) becomes as another dummy summations
form
XNx

l¼1

Ai;lI
m
l;j;k þ

XNy

l¼1

Bj;lI
m
i;l;k þ

XNz

l¼1

Ck;lI
m
i;j;l ¼ Fi;j;k ð10Þ
This time the right hand side of Eq. (10) is Fi;j;k ¼ fi;j;k � f ðBCÞ
i;j;k , in which the boundary conditions are taken into account, and the

known quantities f ðBCÞ
i;j;k on the left-hand side of Eq. (8) were transferred to the right hand side. The detail presentation of f ðBCÞ

i;j;k ,
when ðlm > 0;gm > 0; nm > 0Þ for example, is
f ðBCÞ
i;j;k ¼ Ai;0I0;j;k þ Bj;0Ii;0;k þ Ck;0Ii;j;0 ð11Þ
The physical meaning of f ðBCÞ
i;j;k should be clear. For lm > 0; I0;j;k are known and will be imported as positive boundary condi-

tions, while INx ;j;k are unknowns and should be solved as negative boundary values. The situations for gm > 0 and nm > 0 are
the similar.

For a whole 3D system, they are eight kinds of boundary conditions due to the combinations of direction cosines, they are,
ðlm > 0;gm > 0; nm > 0Þ, ðlm > 0;gm > 0; nm < 0Þ, ðlm > 0;gm < 0; nm > 0Þ, ðlm > 0;gm < 0; nm < 0Þ, ðlm < 0;gm > 0; nm > 0Þ,
ðlm < 0;gm > 0; nm < 0Þ, ðlm < 0;gm < 0; nm > 0Þ, ðlm < 0;gm < 0; nm < 0Þ.

It should be noticed that, when the known values Ii;j;k are at corners or on edges of the system, their values may be related
to three or two surfaces. If there exit discontinuous boundary conditions, their values will take the mathematical mean of
three or two surfaces’ values [11].

Finally, we get the Chebyshev matrix equations for discrete ordinates equations after boundary conditions import
eA�ð1ÞeIm þeIm
�ð2ÞeB þeIm

�ð3ÞeC ¼ eF ð12Þ
where matrices eA; eB and eC are still square and related to the first derivatives with respect to three coordinates separately in
Cartesian system, eIm is the 3D solution matrix in m direction, and eF is the known right hand side. It is clear that the complex
values are included in eigenvalues and the corresponding eigenvectors of all coefficient matrices eA; eB and eC . Thus the direct
and efficient matrix-diagonalization method is no longer suitable for Eq. (12).

3. Schur-decomposition for Eq. (12)

Now the task is to get the unique solutions of Eq. (12) using Schur-decomposition.
Taking any one direction m, we rewrite Eq. (12) as a general form, in which the up index m is omitted, like
A�ð1ÞX þ X�ð2ÞBþ X�ð3ÞC ¼ D ð13Þ
where the real matrices A, B, C and D are dimensions of m�m;n� n; l� l and m� n� l, respectively, the unknown matrix X
is dimension of m� n� l.

Throughout the remaining part of this paper, we denote the transpose of matrix A by AT , the quasi-upper or quasi-lower
triangular form after Schur-reduction of A by A0, the kth layer of 3D matrix X by XðkÞ. We use the small letters to represent the
entries of matrices.

3.1. The necessary and sufficient condition for the existence of unique solution to Eq. (13)

By applying Schur-decomposition, the matrices A, B and C can be reduced to triangular forms [9]
A0 ¼ UT AU ¼

a01;1
a02;1 a02;2

..

. ..
. . .

.

a0m;1 a0m;2 � � � a0m;m

0BBBBB@

1CCCCCA; B0 ¼ VT BV ¼

b01;1 b01;2 � � � b01;n
b02;2 � � � b02;n

. .
. ..

.

b0n;n

0BBBBB@

1CCCCCA; C0 ¼WT CW ¼

c01;1 c01;2 � � � c01;l
c02;2 � � � c02;l

. .
. ..

.

c0l;l

0BBBBB@

1CCCCCA:
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where the matrices U, V and W are orthogonal similarity transformations [8], a0i;i 2 rðAÞ; ði ¼ 1;2; . . . ;mÞ; b0j;j 2 rðBÞ;
ðj ¼ 1;2; . . . ;nÞ; c0k;k 2 rðCÞ; ðk ¼ 1;2; . . . ; lÞ. rðAÞ means the concourse of eigenvalues of matrix A.

Eq. (13) can be rewritten as the following form by replacing X with U�ð1ÞX
0
�ð3ÞW

T
�ð2ÞV

T and D with U�ð1ÞD
0
�ð3ÞW

T
�ð2ÞV

T

A0�ð1ÞX
0 þ X0�ð2ÞB

0 þ X 0�ð3ÞC
0 ¼ D0 ð14Þ
where X 0 ¼

X 0ðlÞ

..

.

X 0ð2Þ

X 0ð1Þ

0BBB@
1CCCA; D0 ¼

D0ðlÞ

..

.

D0ð2Þ

D0ð1Þ

0BBB@
1CCCA, and each X 0ðkÞ or D0ðkÞ is a m� n matrix. Regarding c0kþ1;k ¼ 0, thus
A0X 0ð1Þ þ X 0ð1ÞðB0 þ c0k;kIÞ ¼ D0ð1Þ; k ¼ 1

A0X 0ðkÞ þ X 0ðkÞðB0 þ c0k;kIÞ ¼ D0ðkÞ �
Pk�1

t¼1
c0t;kX 0ðtÞ; k ¼ 2;3; . . . ; l

8><>: ð15Þ
where I in above equation is the identity matrix.
Now the 3D matrix Eq. (14) is reduced to 2D Sylvester Eq. (15). We have known that, for the Sylvester equation, if and

only if riðA0Þ þ rjðB0 þ c0k;kIÞ – 0ði ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ; n; k ¼ 1;2; . . . ; lÞ, Eq. (15) has unique solution. While,
riðA0Þ þ rjðB0 þ c0k;kIÞ ¼ riðA0Þ þ rjðB0Þ þ rkðc0k;kIÞ and rkðc0k;kIÞ ¼ rkðC0Þ ¼ rkðCÞ;riðA0Þ ¼ riðAÞ;rjðB0Þ ¼ rjðBÞ, therefore, for
Eqs. (13) or (14), the necessary and sufficient condition for the existence of unique solution is
riðAÞ þ rjðBÞ þ rkðCÞ – 0ði ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;n; k ¼ 1;2; . . . ; lÞ. Please note that this condition is suitable for Eq. (13)
whether riðAÞ;rjðBÞ and rkðCÞ are real or complex.

3.2. Solving process

The matrix A is reduced to real, block quasi-lower triangular form (real Schur form) A0 by an orthogonal similarity trans-
formation U.
A0 ¼ UT AU ¼

A01;1

A02;1 A02;2

..

. ..
. . .

.

A0p;1 A0p;2 � � � A0p;p

0BBBBBBB@

1CCCCCCCA

where each block A0i;iði ¼ 1;2; . . . ; pÞ is of order at most two (if A does not have any complex eigenvalue, A0 will be a triangular
matrix). Similarly, B and C are reduced to quasi-upper triangular forms, respectively.
B0 ¼ VT BV ¼

B01;1 B01;2 � � � B01;q
B02;2 � � � B02;q

. .
. ..

.

B0q;q

0BBBBBB@

1CCCCCCA

C 0 ¼WT CW ¼

C01;1 C 01;2 � � � C 01;r
C 02;2 � � � C 02;r

. .
. ..

.

C0r;r

0BBBBBB@

1CCCCCCA

where again each B0j;jðj ¼ 1;2; . . . ; qÞ, and C0k;kðk ¼ 1;2; . . . ; rÞ is of order at most two. In above transformations, matrices U, V
and W are real unitary matrices and dimensions of m�m;n� n and l� l, respectively. They are guaranteed by Schur’s tri-
angularization theorem. If
D0 ¼ UT
�ð1ÞD�ð3ÞW�ð2ÞV
and
X0 ¼ UT
�ð1ÞX�ð3ÞW�ð2ÞV
then Eq. (13) is equal to
A0�ð1ÞX
0 þ X0�ð2ÞB

0 þ X 0�ð3ÞC
0 ¼ D0 ð16Þ
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Please note that, the presentations of matrices A0;B0 and C0 in Eq. (16) are different from those in Eq. (14). Now the unknown
solution matrix is X 0. The solving procedure of Eq. (16) will be switched ceaselessly according to the situations of different
eigenvalues of C.

3.2.1. Switch one: for the real eigenvalues of C
Under this situation, c0kþ1;k is zero, Eq. (16) can be reduced to the form of Eq. (15).
Set F 0ðkÞ ¼ D0ðkÞ �

Pk�1
t¼1 c0t;kX0ðtÞ, now Eq. (16) is reduced to the 2D matrix equation.
A0X 0ðkÞ þ X 0ðkÞðB0 þ c0k;kIÞ ¼ F 0ðkÞ ð17Þ
where X0ðkÞ ¼

x0ðkÞ1

x0ðkÞ2

..

.

x0ðkÞm

0BBBB@
1CCCCA and F 0ðkÞ ¼

f 0ðkÞ1

f 0ðkÞ2

..

.

f 0ðkÞm

0BBBB@
1CCCCA. The solving of Eq. (17) will be switched ceaselessly using a sub switch according to

the eigenvalues of A, say, whether they are real or complex.

Case 1: the eigenvalues of A are real Under this case, a0i;iþ1 is zero, x0ðkÞi can be determined by solving the lower triangular
matrix system.
x0ðkÞi B0 þ a0i;i þ c0k;k
� �

I
h i

¼ f 0ðkÞi �
Xi�1

t¼1

a0i;tx
0ðkÞ
t ð18Þ
Case 2: the eigenvalues of A are complex Under this case, the complex values which appear in eigenvalues of A are conju-
gate. If a0i;iþ1 is nonzero, by combining rows i and i + 1 in Eq. (17), we find
a0i;i a0i;iþ1

a0iþ1;i a0iþ1;iþ1

 !
�

x0ðkÞi

x0ðkÞiþ1

 !
þ

x0ðkÞi

x0ðkÞiþ1

 !
� ðB0 þ c0k;kIÞ ¼

f 0ðkÞi

f 0ðkÞiþ1

 !
�

a0i;1 � � � a0i;i�1 0 � � � 0
a0iþ1;1 � � � a0iþ1;i�1 0 � � � 0

 !
�

x0ðkÞ1

x0ðkÞ2

..

.

x0ðkÞm

0BBBBB@

1CCCCCA ð19Þ
Because the complex eigenvalues of A are conjugate, therefore a0i;i ¼ a0iþ1;iþ1, thus Eq. (19) can be simplified as
a0i;iþ1x0ðkÞiþ1 þ x0ðkÞi B0 þ a0i;i þ c0k;k
� �

I
h i

¼ f 0ðkÞi �
Pi�1

t¼1
a0i;tx

0ðkÞ
t

a0iþ1;ix
0ðkÞ
i þ x0ðkÞiþ1 B0 þ a0i;i þ c0k;k

� �
I

h i
¼ f 0ðkÞiþ1 �

Pi�1

t¼1
a0iþ1;tx

0ðkÞ
t

8>>><>>>: ð20Þ
This is a linear system for x0ðkÞi and x0ðkÞiþ1. Eqs. (18) or (20) can be solved successively for x0ðkÞ1 ; x0ðkÞ2 ; . . . ; x0ðkÞm , and further for X 0ðkÞ.
3.2.2. Switch two: for the complex eigenvalues of C
Under this situation, c0kþ1;k is assumed to be nonzero. Eq. (16) can be rewritten as the elements summation form
Xm

t¼1

a0i;tx
0
t;j;k þ

Xn

t¼1

b0t;jx
0
i;t;k þ

Xl

t¼1

x0i;j;tc
0
t;k ¼ d0i;j;k ð21Þ
and the matrix form in two-dimensional of Eq. (21) reads
A0X 0ðkÞ þ X 0ðkÞB0 þ
Xl

t¼1

ct;kX0ðtÞ ¼ D0ðkÞ; k ¼ 1;2; . . . l ð22Þ
Eq. (22) can be reduced to
A0X 0ðkÞ þ X0ðkÞB0 þ
Pkþ1

t¼1
ct;kX 0ðtÞ ¼ D0ðkÞ

A0X 0ðkþ1Þ þ X0ðkþ1ÞB0 þ
Pkþ1

t¼1
ct;kþ1X 0ðtÞ ¼ D0ðkþ1Þ

8>>><>>>: ð23Þ
Rearranging Eq. (23), one gets the final form
A0X 0ðkÞ þ X0ðkÞ B0 þ c0k;kI
� �

þ c0kþ1;kX0ðkþ1Þ ¼ D0ðkÞ �
Pk�1

t¼1
c0t;kX 0ðtÞ

c0k;kþ1X 0ðkÞ þ A0X0ðkþ1Þ þ X 0ðkþ1Þ B0 þ c0kþ1;kþ1I
� �

¼ D0ðkþ1Þ �
Pk�1

t¼1
c0t;kþ1X 0ðtÞ

8>>><>>>: ð24Þ
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In above equation, the first two unknown matrices X0ð1Þ and X 0ð2Þ can be solved directly because the right hand sides are
known values of D0ð1Þ and D0ð2Þ when k ¼ 1. After the solving of X0ð1Þ and X0ð2Þ, the right hand sides of Eq. (24) can be deter-
mined recurrently from F 0ðkÞ ¼ D0ðkÞ �

Pk�1
t¼1 c0t;kX 0ðtÞ and F 0ðkþ1Þ ¼ D0ðkþ1Þ �

Pk�1
t¼1 c0t;kþ1X 0ðtÞ. In other words, when X 0ð1Þ and

X0ð2Þðk ¼ 1Þ are known, F 0ð3Þ and F 0ð4Þ can be computed, then X 0ð3Þ and X0ð4Þðk ¼ 3Þ can be solved from Eq. (24), and so on.
Again, the solving of Eq. (24) will be switched ceaselessly according to the eigenvalues of A, say, whether they are real or

complex.

Case 1: the eigenvalues of A are real Under this case, a0i;iþ1 is zero, then Eq. (24) can be simplified as
x0ðkÞi B0 þ a0i;i þ c0k;k
� �

I
h i

þ c0kþ1;kx0ðkþ1Þ
i ¼ f 0ðkÞi �

Pi�1

t¼1
a0i;tx

0ðkÞ
t

x0ðkþ1Þ
i B0 þ a0i;i þ c0kþ1;kþ1

� �
I

h i
þ c0k;kþ1x0ðkÞi ¼ f 0ðkþ1Þ

i �
Pi�1

t¼1
a0i;tx

0ðkþ1Þ
t

8>>><>>>: ð25Þ
Case 2: the eigenvalues of A are complex Under this case, the complex values which appear in eigenvalues of A are conju-
gate. If a0i;iþ1 is nonzero, Eq. (24) are a group like
Pm

t¼1
a0i;tx

0ðkÞ
t þ x0ðkÞi B0 þ c0k;kI

� �
þ c0kþ1;kx0ðkþ1Þ

i ¼ f 0ðkÞi ;

Pm
t¼1

a0i;tx
0ðkþ1Þ
t þ x0ðkþ1Þ

i B0 þ c0kþ1;kþ1I
� �

þ c0k;kþ1x0ðkÞi ¼ f 0ðkþ1Þ
i ;

8>>><>>>: i ¼ 1;2; . . . ;m ð26Þ
By combining rows i and iþ 1 in Eq. (26), we find
Piþ1

t¼1
a0i;tx

0ðkÞ
t þ x0ðkÞi B0 þ c0k;kI

� �
þ c0kþ1;kx0ðkþ1Þ

i ¼ f 0ðkÞi

Piþ1

t¼1
a0iþ1;tx

0ðkÞ
t þ x0ðkÞiþ1 B0 þ c0k;kI

� �
þ c0kþ1;kx0ðkþ1Þ

iþ1 ¼ f 0ðkÞiþ1

Piþ1

t¼1
a0i;tx

0ðkþ1Þ
t þ x0ðkþ1Þ

i B0 þ c0kþ1;kþ1I
� �

þ c0k;kþ1x0ðkÞi ¼ f 0ðkþ1Þ
i

Piþ1

t¼1
a0iþ1;tx

0ðkþ1Þ
t þ x0ðkþ1Þ

iþ1 B0 þ c0kþ1;kþ1I
� �

þ c0k;kþ1x0ðkÞiþ1 ¼ f 0ðkþ1Þ
iþ1

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð27Þ
Rearranging Eq. (27), one gets the final form
x0ðkÞi B0 þ a0i;i þ c0k;k
� �

I
h i

þ a0i;iþ1x0ðkÞiþ1 þ c0kþ1;kx0ðkþ1Þ
i ¼ f 0ðkÞi �

Pi�1

t¼1
a0i;tx

0ðkÞ
t

a0iþ1;ix
0ðkÞ
i þ x0ðkÞiþ1 B0 þ a0iþ1;iþ1 þ c0k;k

� �
I

h i
þ c0kþ1;kx0ðkþ1Þ

iþ1 ¼ f 0ðkÞiþ1 �
Pi�1

t¼1
a0iþ1;tx

0ðkÞ
t

x0ðkþ1Þ
i B0 þ a0i;i þ c0kþ1;kþ1

� �
I

h i
þ a0i;iþ1x0ðkþ1Þ

iþ1 þ c0k;kþ1x0ðkÞi ¼ f 0ðkþ1Þ
i �

Pi�1

t¼1
a0i;tx

0ðkþ1Þ
t

a0iþ1;ix
0ðkþ1Þ
i þ x0ðkþ1Þ

iþ1 B0 þ a0iþ1;iþ1 þ c0kþ1;kþ1

� �
I

h i
þ c0k;kþ1x0ðkÞiþ1 ¼ f 0ðkþ1Þ

iþ1 �
Pi�1

t¼1
a0iþ1;tx

0ðkþ1Þ
t

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð28Þ
Again, Eqs. (25) or (28) can be solved successively for x0ðkÞ1 ; x0ðkÞ2 ; . . . ; x0ðkÞm , and further for X 0ðkÞ.
Whether for switch one or switch two, after all X0ð1Þ;X 0ð2Þ; . . . ;X 0ðlÞ being ready, the solution matrix X in Eq. (13) can be com-
puted through X ¼ U�ð1ÞX0�ð3ÞWT

�ð2ÞV
T .From above process, we can evaluate the operations. In fact, the solving Eq. (13) is of

l times 2D Sylvester equation solution. For 2D Sylvester equation solution by Schur-decomposition, the operations can be
found in recent reference [25] and take the value of ð4þ 8xÞðm3 þ n3Þ þ 5mnðmþ nÞ, where x is the average number of
QR algorithm. Therefore, it is not difficult to know that, for Eq. (13), the operations take the value of
ð4þ 8xÞðm3 þ n3 þ l3Þ þ ½5mnðmþ nÞ�l.
4. Numerical results and discussion

In principal, the 3D matrix Eq. (13) can be reduced to 2D one (Sylvester equation) using tensor product technique [11,26]
like
AX þ XC ¼ D ð29Þ
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where this time the matrix A is a tensor product of original matrices A and B in Eq. (13), and the resolution matrix X and the
known right hand side matrix D are transformed to 2D ones correspondingly. After that, the direct Schur-decomposition
method for 2D matrix equation is adopted to solve our problem successfully. However, as mentioned in Refs. [11,26], the
computer memory requirement is too heavy for some even moderate accuracy computations due to tensor product, special
for large resolutions needing cases. For example, if the original square matrices A and B are dimensions of m�m and n� n
separately, the resultant matrix after tensor product will be dimension of ðm� nÞ � ðm� nÞ. Due to the large memory need-
ing, the CPU time increases exponentially.

Certainly, there are also many other methods which are available for the present physical problem. For example, in very
recent, the efforts to enhance the stabilities and to fast the speeds of the solutions of DOM equations [27–29] were made.
However, according to the authors’ knowledge, there are not any direct solution algorithms for DOM equations. In order
to give detail comparisons and show the superiorities of the Schur-decomposition for 3D matrix equations, the authors
developed three methods.

The first one is the standard DOM [22,24,30,31] in which the iterative solution process is needed. In DOM, the same
weighted diamond-difference scheme which relates the cell edge radiant intensities to the cell center radiant intensity is
used, and the iteration was ended when a convergence criterion of jIm

p � Im�
p j=Im�

p 6 10�8 was satisfied, where the Im
p and

Im�
p represent previous iteration intensity values in any direction m at the center location p of any control volume and its

present one, respectively.
The second one and the third one are all based on Chebyshev collocation spectral method for the discrete ordinates Eq.

(2). The difference between the second and the third ones exists: in the second method, for the resultant 3D matrix Eq. (12),
the Schur-decomposition is used to solve the 2D Sylvester type matrix equations after the transformation of 3D matrix equa-
tions to 2D ones by tensor product; while in the third method, the Schur-decomposition, which is developed by authors, is
used to solve the 3D matrix Eq. (12) directly. Please remember that the second and the third methods can provide exactly the
same results under the same inputs.

For all above three methods, an angular quadrature of SSD2a with 48 directions in whole 4p solid angle [31] is adopted for
the angular discritization, and the codes are designed using both MATLAB and FORTRAN 95 computer languages. The com-
parisons are made on a personal computer with Intel(R) Core(TM)2 Duo CPU E4500 (2.20 GHz) and 2.0 GB (DDR2) memory.

4.1. Accuracy validation

To illustrate the accuracy of the direct spectral method (abbreviate to SP later) for 3D system, some typical computational
results from SP are compared with those from standard DOM under the same quadrature scheme and grid points. Our DOM
code was validated before in Ref. [31].

4.1.1. Radiative heat flux on the side wall
First the dimensionless heat flux densities on side wall along different lines are presented in Figs. 1–6 for different res-

olutions. We choose the first line which is mostly close to the center of the side wall, and the second line which is mostly
close to the corner.

For the resolutions of Nx � Ny � Nz ¼ 5� 5� 21, the results are comparatively given in Fig. 1 along the line of
ðX ¼ 0:3090;Y ¼ 1; ZÞ and in Fig. 2 along the line of ðX ¼ 0:8090;Y ¼ 1; ZÞ, respectively. In Fig. 1, the biggest relative error
of SP with respect to DOM is 3.5877%, while in Fig. 2, its 8.4351%. Increase the resolutions up to 9� 9� 33, the results
are given along the line of ðX ¼ 0:1736;Y ¼ 1; ZÞ in Fig. 3 and along the line of ðX ¼ 0:9397;Y ¼ 1; ZÞ in Fig. 4, respectively.
Now the biggest relative errors reduced to 3.2082% in Fig. 3 and 0.9734% in Fig. 4, separately. Further increase the resolutions
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Fig. 1. Comparison of dimensionless heat flux density to the side wall along the line of ðX ¼ 0:3090; Y ¼ 1; ZÞ with the resolutions of 5� 5� 21.
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Fig. 2. Comparison of dimensionless heat flux density to the side wall along the line of ðX ¼ 0:8090;Y ¼ 1; ZÞ with the resolutions of 5� 5� 21.
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Fig. 3. Comparison of dimensionless heat flux density to the side wall along the line of ðX ¼ 0:1736; Y ¼ 1; ZÞ with the resolutions of 9� 9� 33.
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Fig. 4. Comparison of dimensionless heat flux density to the side wall along the line of ðX ¼ 0:9397; Y ¼ 1; ZÞ with the resolutions of 9� 9� 33.
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up to 13� 13� 45, the results are given along the line of ðX ¼ 0:0349;Y ¼ 1; ZÞ in Fig. 5 and along the line of
ðX ¼ 0:9976;Y ¼ 1; ZÞ in Fig. 6, respectively. This time the biggest relative errors are 2.0706% in Fig. 5 and 2.8575% in
Fig. 6, separately. The computational results indicated that the biggest relative errors will not decrease obviously when
the resolutions were increased more than 13� 13� 45.

The results of dimensionless heat flux densities on the side wall show a very good agreement between the SP and the
DOM.
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Fig. 5. Comparison of dimensionless heat flux density to the side wall along the line of ðX ¼ 0:0349; Y ¼ 1; ZÞ with the resolutions of 13� 13� 45.
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Fig. 6. Comparison of dimensionless heat flux density to the side wall along the line of ðX ¼ 0:9976;Y ¼ 1; ZÞ with the resolutions of 13� 13� 45.

B.-W. Li et al. / Journal of Computational Physics 229 (2010) 1198–1212 1207
4.1.2. Point values of radiative source term
Second the dimensionless radiative source terms along different lines are presented in Figs. 7–15 for different resolutions.

We choose the first line which is mostly close to the center of the furnace, the second line which is mostly close to the side
wall, the third line which is mostly close to the corner.

For the resolutions of 5� 5� 21, the results are comparatively given in Figs. 7–9 along the lines of
ðX ¼ 0:3090;Y ¼ 0:3090; ZÞ, ðX ¼ 0:3090;Y ¼ 0:8090; ZÞ, and ðX ¼ 0:8090;Y ¼ 0:8090; ZÞ, respectively. The biggest relative
errors of SP with respect to DOM are 5.7233%, 1.3594%, and 0.8759%, separately. Increase the resolutions up to
9� 9� 33, the results are given in Figs. 10–12 along the lines of ðX ¼ 0:1736;Y ¼ 0:1736; ZÞ, ðX ¼ 0:1736;Y ¼ 0:9397; ZÞ,
and ðX ¼ 0:9397;Y ¼ 0:9397; ZÞ, respectively. Then the biggest relative errors reduced to 4.7741%, 1.6056%, and 0.8001%,
separately. Further increase the resolutions up to 13� 13� 45, the results are given in Figs. 13–15 along the lines of
ðX ¼ 0:0349; Y ¼ 0:0349; ZÞ, ðX ¼ 0:0349;Y ¼ 0:9976; ZÞ, and ðX ¼ 0:9976;Y ¼ 0:9976; ZÞ, respectively. This time the biggest
relative errors reduced to 2.3377%, 1.4810%, and 0.4182%, separately.

Again, the results of dimensionless source terms within the furnace show a very good agreement between the SP and the
DOM.

4.2. CPU time comparison with standard DOM

The most attractive advantage of direct spectral method over the standard DOM is its high speed. However, even though
the SP with 2D Schur-decomposition and the SP with 3D Schur-decomposition solvers are all direct, their CPU time costs can
be very different. The CPU time cost comparisons are listed in Tables 2 and 3 when the MATLAB and FORTRAN 95 computer
languages are used for the codes design, respectively. The CPU times of three methods, which are developed in present work,
are listed against the resolutions.

From Table 2, when the resolutions increase from Nx � Ny � Nz ¼ 5� 5� 21 up to Nx � Ny � Nz ¼ 17� 17� 57, the CPU
time increase from 0.4617 up to 7.6003 seconds for SP with 3D Schur-decomposition, from 0.3156 up to 133.0637 seconds
for SP with 2D Schur-decomposition, but from 2.5385 up to 543.6464 seconds for standard DOM. That means, for the ade-
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Fig. 8. Comparison of dimensionless source term alone the line of ðX ¼ 0:3090; Y ¼ 0:8090; ZÞ with the resolutions of 5� 5� 21.
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Fig. 9. Comparison of dimensionless source term alone the line of ðX ¼ 0:8090; Y ¼ 0:8090; ZÞ with the resolutions of 5� 5� 21.
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Fig. 7. Comparison of dimensionless source term alone the line of ðX ¼ 0:3090; Y ¼ 0:3090; ZÞ with the resolutions of 5� 5� 21.
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quate accuracy requirements, Nx � Ny � Nz ¼ 13� 13� 45 for example, almost one tenth CPU time is needed when SP with
3D Schur-decomposition solver is used compared SP with 2D Schur-decomposition solver, and almost one fiftieth CPU time
is needed compared with the standard DOM.

It is well known that the MATLAB is the most suitable computer language for matrix operations. While, most of compu-
tations in the standard DOM are not relative to matrix operations. Thereby the FORTRAN 95 computer language is used to
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Fig. 11. Comparison of dimensionless source term alone the line of ðX ¼ 0:1736;Y ¼ 0:9397; ZÞ with the resolutions of 9� 9� 33.
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Fig. 12. Comparison of dimensionless source term alone the line of ðX ¼ 0:9397;Y ¼ 0:9397; ZÞ with the resolutions of 9� 9� 33.
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Fig. 10. Comparison of dimensionless source term alone the line of ðX ¼ 0:1736;Y ¼ 0:1736; ZÞ with the resolutions of 9� 9� 33.

B.-W. Li et al. / Journal of Computational Physics 229 (2010) 1198–1212 1209
design three codes for three methods accordingly. The results listed in Table 3 show that, the CPU time costs of SP with 3D
Schur-decomposition are still the least for an adequate accuracy requirement, and those of SP with 2D Schur-decomposition
are the most. When the resolutions reach Nx � Ny � Nz ¼ 17� 17� 57, the memory is overflow for SP with 2D Schur-decom-
position due to tensor product.

Please note that, the present computational results cannot be compared with the exact solutions which are listed in Ref.
[20] due the intrinsic characteristics of collocation points of Chebyshev collocation spectral method, in other words, the grid
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Fig. 14. Comparison of dimensionless source term alone the line of ðX ¼ 0:0349;Y ¼ 0:9976; ZÞ with the resolutions of 13� 13� 45.
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Fig. 13. Comparison of dimensionless source term alone the line of ðX ¼ 0:0349; Y ¼ 0:0349; ZÞ with the resolutions of 13� 13� 45.
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Fig. 15. Comparison of dimensionless source term alone the line of ðX ¼ 0:9976; Y ¼ 0:9976; ZÞ with the resolutions of 13� 13� 45.
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points cannot be taken exactly the same on which the exact solutions exit. Therefore, the comparisons of dimensional radi-
ative heat flux and source term in this section could not verify the accuracy of the present method, because the standard
DOM is also an approximated method. The given relative errors of SP with respect to standard DOM just illustrate that, both
SP and DOM consist with each other and provide the good accurate results with the increasing of resolutions.



Table 3
CPU time comparisons between the standard DOM and SP using FORTRAN 95 computer language.

Resolutions ðNx � Ny � NzÞ CPU time (second)

SP with 2D Schur-decomposition SP with 3D Schur-decomposition Standard DOM

5� 5� 21 2.8758 0.7196 2.0473
9� 9� 33 48.2664 2.2157 16.7975
13� 13� 45 725.4545 6.6865 169.7954
17� 17� 57 Stack Overflow 17.6245 502.5462

Table 2
CPU time comparisons between the standard DOM and SP using MATLAB computer language.

Resolutions ðNx � Ny � NzÞ CPU time (second)

SP with 2D Schur-decomposition SP with 3D Schur-decomposition Standard DOM

5� 5� 21 0.3156 0.4614 2.5385
9� 9� 33 2.7485 1.4234 25.4818
13� 13� 45 22.8985 3.5341 183.9122
17� 17� 57 133.0637 7.6003 543.6464
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5. Conclusions and remarks

After the angular discretization by DOM, the three-dimensional radiative discrete ordinates equations are discretized by
Chebyshev collocation spectral method in space. The resultant 3D matrix equations cannot be solved by matrix-diagonaliza-
tion directly and efficiently because the eigen-system is complex rather than real. Then the Schur-decomposition, which is
special efficient and suitable for complex eigen-systems, for 3D matrix equations is developed to avoid the complex number
computations, and is used to directly solve the radiative matrix equations successfully.

In order to verify the outstanding superiorities of the Schur-decomposition for 3D radiative matrix equations, three codes
for standard DOM, SP with 2D Schur-decomposition and SP with 3D Schur-decomposition are designed using MATLAB and
FORTRAN 95 computer language, respectively. In SP with 2D Schur-decomposition, the 3D radiative matrix equations are
transformed to 2D ones by tensor product. A typical case of radiative heat transfer within a rectangular furnace, in which
there are absorbing-emitting, and radiative gray media, is adopted to make comparisons. The results show that, the present
SP with 2D or 3D Schur-decomposition methods can provide good accuracy, especially, the CPU time costs of the SP with 3D
Schur-decomposition method are almost one thirtieth to one fiftieth of the standard DOM under the same computer inputs.

In present, the physical model, which was adopted from reference, is relatively simple. For example, the participating
medium is absorbing-emitting, but no-scattering, radiative gray; and the boundaries are just black. In Refs. [16,17], the effect
of angular quadrature on the computational accuracy are investigated for 1D problems, but in 3D systems, it should be inves-
tigated more detailedly. While, those will be our future works.
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